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Abstract--Theoretical results from the field of suspension theology are studied in the general 
context of nonlinear continuum mechanics, in order to extract information regarding the formulation 
of a phenomenological stress relation to model non-Newtonian fluids. The constitutive equations 
obtained for dilute suspensions of solid ellipsoids, elastic spheres and liquid droplets are shown to 
conform to a single phenomenological model first proposed by Hand, which merges as an equation 
with considerable physical basis and potential usefulness. Furthermore, in all of the above three 
cases, certain coefficients in Hand's equation are found to retain the same sign. This result may 
apply more generally and possibly have some interesting implications. 

I N T R O D U C T I O N  

The frequent occurrence o1 particulate systems in nature and in industrial processes 
makes it very desirable to achieve a good understanding of their flow properties and theology, 
since such a knowledge can have important implications in various branches of engineering. 
In addition to this pragmatic aspect though, the study of suspensions is of considerable 
theoretical value. First of all from a purely academic point of view, it gives rise to some 
fundamental fluid mechanical problems, many of which have remainext unsolved. Another 
facet of the subject concerns certain non-Newtonian properties of flowing suspensions, 
such as a strain-rate dependent viscosity, normal stress effects and relaxation effects, which 
arise even when the disperse phase is very dilute. This remarkable behavior of particulate 
systems was recognized by numerous authors, e.g. Jeffery (1922) for solid ellipsoids, 
Batchelor (1970b) for slender solid panicles, Lin, Peer), & Schowalter (1970) for solid 
spheres under the influence of smaU but non-zero inertia forces, Oldroyd (1953, 1958) 
for liquid droplets, and Goddard & Miller (1967) and Roscoe (1967) for elastic spheres. 

All the studies mentioned above dealt with cases in which the length scale of the motion 
is much larger than the dimensions of the panicles, so that the suspension can be effectively 
considered as a continuum with bulk propcnies that are ensemble averages of the corres- 
ponding local quantities. Under these conditions then it is possible in principle, after obtain- 
ing the detailed flow field around each panicle, to derive without any further assumptions 
an exact analytical theological equation of state, which contains no adjustable parameters 
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and in which the functional relation between the stress and all the relevant physical quan- 
tities is shown explicitly. 

One of the drawbacks of this approach, to be termed suspension rheology, results from 
the fact that the analysis must be repeated for each particular suspension of interest. 
Evidently this is a serious inconvenience, because the microscopic problem is in general 
very difficult or even impossible to solve. However, since many suspensions as well as 
many non-Newtonian fluids do exhibit the same peculiar properties, one is led to believe 
(or hope) that their rheological behavior could be described by a general constitutive 
equation which would represent a large class of non-Newtonian continua. 

A number of such general stress-strain relations have already been derived from purely 
phenomenological considerations, and familiar examples include, to name but a few, the 
Reiner-Rivlin equation, the Rivlin-Ericksen (1955) equation, Oldroyd's (1950) equations, 
and the equations for anisotropic fluids developed by Ericksen (1960a, b) and by Hand 
(1962). However, since these relationships are often obtained in a purely formal way, they 
are of rather limited usefulness from the practical point of view in that, because of their 
generality, they often contain a large number of unknown coefficients which cannot be 
determined using the presently available experimental techniques. Besides, since their 
derivation does not usually take into consideration the physical properties or the structure 
of the fluid, it is almost impossible to decide a priori which one, if any, of the existing 
phenomenological equations will apply for a given material. 

Although, to date, there has been little interaction between suspension rheology and 
phenomenological theories, it is our belief that a great deal of information could be gained 
by considering concurrently the two approaches. Specifically, a comparison between the 
available phenomenological equations and the constitutive relations obtained for dilute 
suspensions of solid or deformable particles, could determine which, among the former 
are physically realistic, and can yield information regarding the physical significance of 
some of the phenomenological coefficients. Conversely, once this classification of the 
phenomenological equations is established, this new knowledge could be used to postulate 
a priori the form of the constitutive relation of a given suspension, and thus either to simplify 
the derivation of the stress-strain relation or to generalize the latter if it is known only for 
a particular case. 

From those considerations, it is clear then that suspension rheology can play a central 
role in the formulation of a general phenomenological constitutive equation, and hence 
it is important that the subject be studied further. Indeed, a start in this direction has 
already been made by Gordon & Schowalter (1972). Here, we shall focus on one aspect 
of this topic, specifically the comparison between certain phenomenological equations 
and the actual stress-strain relations describing various suspensions, and shall show that 
the expression for the bulk stress of dilute suspensions of solid ellipsoids, elastic spheres 
or liquid droplets conforms to only one phenomenological constitutive relation, the one 
first proposed by Hand (1962), which thus emerges as an equation with considerable 
physical basis and potential usefulness. We further illustrate this comparison by proposing 
an extension to general shear flows, the constitutive equation obtained in the case of a 
simple shear flow, by Lin, Peery & Schowalter (1970) for a dilute suspension of solid 
spheres, under the influence of small but non-zero inertia forces. 
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P H E N O M E N O L O G I C A L  C O N S T I T U T I V E  E Q U A T I O N S  FOR N O N - N E W T O N I A N  
F L U I D S  

As was mentioned briefly in the Introduction, a large number of phenomenological 
constitutive equations has already been proposed which, it was hoped, could adequately 
describe the rheological behavior of non-Newtonian fluids. Of these the earliest was 
obtained by forming the most general relationship between the stress and the rate of 
strain when the former is assumed to depend only on the latter at time t, and gave rise to 
the Reiner-Rivlin (or Stokesian) fluid. Another model was proposed by Oldroyd (1950) 
which included time effects and resulted in the constitutive equation 

(1 + 1(~/Nt))P~j - 2~:(e,kP~s + P~e~i) = 2)/(1 + Iz(.@/.~t))eij - 8rlvei~e~s, [1] 

where the Cartesian tensor notation is adopted, Po is the stress tensor, % is the rate of 
strain tensor, and ~, ~, #, )7 and v are constants characteristic of the material. Also, ~ / ~ t  
denotes the Jaumann derivative, defined for an arbitrary tensor T~j, by: 

~T, j  = ~T o 

~ t  c~t 

,~T,j 

where us and o~ are, respectively, the local velocity and vorticity of the fluid. 
A more general theory was also proposed by Rivlin & Ericksen (1955), who postulated 

that the stress could be represented as a polynomial function of the rate of strain and its 
first N co-rotational (or Jaumann) derivatives, thereby yielding 

[21 

where the symbol Sd refers to the symmetric and trackless part of the indicated tensor, 
and the coefficients ~o . . . . .  ~9 are arbitrary functions of the simultaneous scalar invariants 
of the matrices corresponding to e u, ~ e u / ~ t , . . .  ~Neu/~rN and their products. 

A difffculty, inherent in those theories, lies in the arbitrariness of the form selected for 
the constitutive equation and its apparent lack of physical justification. Furthermore, 
the proposed relationships are generally either algebraically simple but inaccurate when 
applied to real physical systems (e.g. the Reiner-Rivlin equation), or, if more complex, 
they contain a large number of unknown coefficients which cannot be uniquely determined 
with the present experimental techniques (e.g. the Rivlin-Ericksen equation). 

In contrast, the theory of anisotropic fluids, first presented by Ericksen (1960a, b) has 
the advantage of taking into account the microscopic structure of the continuum. Indeed, 
a basic assumption is that the fluid is characterized at each point by a single preferred 
direction n~ and that the stress depends not only on the velocity gradient bu~bx~ but also on 
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the local anisotropy• Consequently. 

where f~ is an arbitrary function, symmetric in i and j, and p is an isotropic pressure term 
defined up to an additive constant in view of the assumed incompressibility of the fluid. 
The vector n~ is then supposed to satisfy a differential equation of the type: 

hi = gi(nk, ?U~,/?Xl), 

where the dot denotes the co-rotational derivative. 
By supposing that the functionsf~ and g~ are polynomials, and by applying the principle 

of material frame indifference. Ericksen (1960b) then obtained two closed-form expressions 
for the stress and for ni, which, with the further restriction of a linear dependence on the 
rate of strain, become : 

P,i = - pa~j + 2t.te,~ + (la~ + #zet,.ntn=)nzn~ + 2#3(ean~nj + ej~n~ni). [3] 

with ~ n i / ~ t  = 2~eitn! - eimntn=ni), [4] 

where ). and the/z's are material constants. Evidently, since in the above the vector n~ is 
undistinguishable from -n~, (3) and (4) seem particularly well suited for describing the 
stress of a dilute suspension of particles of revolution having a fore-and-aft symmetry. 

As shown by Hand (1962), Ericksen's theory can easily be extended by assuming that the 
structure of the fluid is characterized at each point by a symmetric second-order tensor, 
A~j. Thus. a reasoning identical to Ericksen's (1960b) leads to: 

Pii = flofiii + fl~e,j + fl2Sd(Aij) -b flaSd(ei~A~i) + fl~Sd(Ai~A~) + fl~Sd(eitetj) 

+ fl6Sd(ei~A~,nAmj) + fl~Sd(ei~e~A=~) + flsSd(ei~e~,~A~A~j), [5] 

"~Ai~ = Yo31j + yte~ + y2Sd(Ai~) + 7aSd(e~A~) + yaSd(A~A~) + "/sSd(e,et~) with ~r  

+ 76Sd(eilAt,,,Amj) + y:Sd(eizel,.Amj) + "/sSd(eiteo,,A,,,pApj), [6] 

where the ffs and y's are functions of the complete set of scalar invariants: 

.4ij. At,.A,. ~, A~mAmpApl, e~.,ez,., el~e.,~epl, ezmAl.,, elme,.pApt, et,~A,.pApj, el,~e~pApqAqi. [7] 

Furthermore, if the stress is assumed to be linear in eii, [5] simplifies to: 

Pit = (ao + 0.1ezmAml + a2et,.A,~pAp~)5ij + (a3 + a~el,.Am~ + asetmAmpApt)Sd(Aii) 

+ 0.6ei~ + 0.:Sd(eilAl~) + asSd(eilAl.,A., ~) 

+ (o"9 + 0.1oel,.Aml + al telmAmpApl)Sd(AitAo), [8~ 

where the 0.'s are now functions only of the first three terms of [7]. Similarly, when ~ A i j / 2 t  
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is also linear in e~j. [6] becomes 

C_/ Aij,/c.~/t = (00 + Olel,.Al.. + 02etmA.nrApl)bij + (03 + O.el,.A=t + 05elmAmj, Apt)Sd(Ai  j) 

+ 06ei j + O.~Sd(e,Azj} + OaSd(e~tAlmA..j) 

+ (09 + 01oet.~A,.t + 01 lel..A=pApt)Sd(AitAtj). [9] 

It is obvious that [8] and [9] reduce, respectively, to [3] and [4] if the tensor Aij is replaced 
by ninj. 

The great advantage of this theory over most of the other phenomenological models 
lies in the fact that, in principle, it allows one to decide a priori whether or not such equations 
could adequately describe a given fluid of known physical properties. For example, it is 
evident that the constitutive equation of a dilute suspension of solid ellipsoids in the absence 
of Brownian motion should be expected to have the general form [5]. Of course, the 
restriction to an ellipsoidal anisotropy limits the applicability of Hand's relations to a 
special class of fluids, but this is hardly a fundamental difficulty since the theory can easily 
be extended by including higher-order tensors in the description of the microstructure of 
the material. Although the resulting equations become then more complicated and more 
difficult to handle, such a generalization will be seen to arise naturally in the case of dilute 
emulsions. 

Let us consider at this point to what extent the fluids described by the various phenomeno- 
logical equations mentioned above can be incorporated within the framework of Nolrs 
theory. According to Coleman, Markovitz & NoU (1966) the stress of a "simple fluid" 
depends, at any instant t, only on the density p, and on the past history of motion Ul,,, i.e. 

Pij(t) = - P 6 i j  + fi) [Ulm( t - s),p(t)], 
s = 0  

[10] 

where f~j is an isotropic, tensor-valued tensor functional. It is clear that Oldroyd's and 
Rivlin-Ericksen equations conform to this model and that, consequently, the materials 
they represent are simple fluids. However, such a conclusion cannot be drawn quite so 
readily for an anisotropic fluid, and a bit of analysis is required. We note first of all that 
Hand's relations can be expressed as 

and 

Pij = - Pt~ij at- fij(elm, Al,.), [11] 

~ A i j / ~ t  = gi~(e~.., Al=), [12] 

and consider the case where the fluid, at rest until a time t = to, is subjected to a straining 
~o~ 

motion eij(t) for t > t o. Denoting by A ~ X )  the anisotropy of the fluid at rest (e.g. the value 
of  Aij at t = t o) due to particle X. we have for an incompressible substance that 

A o ( X ,  t) = Gij (X,  t - s), A~=(X) , 
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and therefore, because of[11], that 

Pij = P6ij + f~j el,., Gl,. e ~  (X ,  t - s), Apq(X) • 
.,i = 0 

or that Pii = - P 6 i j  + Fit (X ,  t - s), A~,.(X) • [13] 

From a comparison of (10) and (13), it then follows that the fluids modeled by Hand's 
relations are not, in general. "simple fluids". However, if the anisotropy arises from the 

~o~ 
motion only, i.e. if the fluid is isotropic at rest, then the tensor As,. becomes independent 
of position and equals 6~, or 0, depending on whether it measures the local anisotropy or 
the local deviation from isotropy. Consequently, in this instance, [13] reduces to [10], 

It is clear, then. that suspensions of particles which are isotropic in a stress-free state, 
such as liquid droplets or elastic spheres, will be "pseudo-anisotropic fluids" and, hence, it 
should be possible to describe them with a constitutive equation similar to [10], provided 
a solution to the differential equation [12] can be obtained. 

In the following sections, the rheology of several types of dilute suspensions will be 
studied and compared to some phenomenological theories. In all cases, the suspending 
medium will be taken as an incompressible Newtonian fluid of viscosity ~0, and the 
disperse phase will be assumed sufficiently dilute for interactions between particles to be 
negligible. Inertia effects will be neglected except in one instance, where these will be given 
special consideration. The volume concentration of particles will be denoted by q~ which, 
in our case, will be small compared with unity. 

SUSPENSIONS OF DEFORMABLE PARTICLES 

(a) Liquid droplets  

The rheology of a dilute emulsion of two incompressible Newtonian liquids has been 
studied by many authors, for example by Schowalter, Charley & Brenner (1968) and by 
Frankel & Acrivos (1970). As illustrated by Frankel & Acrivos (1970), in cases where the 
deformation of the drops is small, a regular perturbation solution to the appropriate 
Stokes equations can be obtained for flow past a freely suspended drop, from which an 
expression for the bulk stress of the emulsion, as defined by Batchelor (1970a), follows 
readily. Two physical parameters of the suspension are of importance in this analysis: 
the ratio, 2. of the droplet viscosity to that of the ambient fluid, and the non-dimensional 
surface tension factor, k, defined as a/#oGa,  where tr is the surface tension of the drop, #0 
is the ambient viscosity, G is the magnitude of the shear flow, and a is the equivalent radius 
of the drop. 

The constitutive relations can be derived for two limiting cases where the drop is kept 
nearly spherical on account either of its large surface tension (k >> 1, ,~ = O(1)) or its high 
viscosity t2 >> 1, k = O(I)). The results for the first case will now be examined. 

By extending the earlier analysis of Frankel & Acrivos (1970) to higher orders in the 
drop deformation, Barthrs-Biesel (1972) has shown that the bulk stress of a dilute emulsion 
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is given by: 

[['I0(2 - I) 24(2 - I)Z(6112 + 579) 1 
P,, = - pfi: + 2/~o% +/x4P ~L~- ~ + 3" + 49(-~'+ ~)T ~ 2Ft'F'" % 

I 24 240(2 - 1)2(1212 + 159)fl2Fl~el," 
+ ~ +  49(22+3) 3 

288(591223 + 4877922 + 749312 + 29628)fl2FlmFu. ] Fo 
245(2;. + 3)3(192 + 16) 

360(; ,  - 1) 2 2 8 8 ( 2  - 6) 

+ 7 -~  + 3S r Bsa(~r,,e,~) + 7(22 + 3) ~/Jsa(~,,F,9 

720(2 - 1)2(792 + 96)/32Sd(eaFl.Fmj ) 
49(22 + 3) 3 

800(2 - 1) 2 

(22 + 3) 2 
~2 Fi~metm 

+ 240(1030202" + 48109223 + 43395922 + 5496402 + 136576)pzF~j~mF~m 
(22 + 3)2(192 + 16)(172 + 16)(102 = 11) 

+ O(Gk-3)}, [14]  

where # = 1/Gk. F~# and Fo. b are symmetric tensors describing the shape of the drop the 
equation of which, in a coordinate system moving with the canter of a particle, is: 

r = (xjx~)l/2 = 1 + 3#Fl,~--~- + - Fl,~Fz. + q + O(Gk-3). 
a -5 

These tensors are determined by the two differential equations 

F~j + (2~1 +40(23)(19~I+ I) + 16) /~ ~Fi~t 

L192 + 16 (1117224 + 1833623 + 1744022 + 34992 - 7572) 1 
- 24(2 + 1) 980(22 + 3)2(2 + 1) [32F~'FIM e U 

['(2 - 1)(2234423 + 5276822 + 455322 + 19356) 

l 980(22 + 3)2(2 + 1) 

6CT(2)FI"Fu" Jl 
+ 245(22 + 3)2(192 + 6)2(102 + 11)(172 + 16)(2 + 1 ~2F~ 

(42 - 9)(19). + 16) ^Sd'e F " 36(1372a + 62422 + 7412 + ~8)~Sd(FuFzj) 
+ -~( '~ + 3 ~  + iS/~ ~ " ol + 35(22 + 3)(192 + 16)(2 + ) 

+ 6(2 - 1)(279323 + 796122 + 84742  + 3522)/32Sd(ei~F~,,F,.~) 
245(22 + 3) 2 (2 + 1) 
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10(43}."-+- 79). + 53) , 2Cs(2)flZF,sa,,Ftm 
3(22 + 3)(}. + i)- /3 Fiyl,,,e~,,,-~ (22 + 3)(192 + 16)(102 + 11)(17~. + 16)(2 + 1) 

+ O(Gk-3), [15] 

~Fijb = (172 + 16){102 + 117 (172 + 16)1102 + 11)/3 

and FiJah + 360(,;. + 1) ~ t  2520(2 4- 1)(22 + 
SdAeijFob) 

2(-142- '  + "~'~ " 
...~lz 4- 192)Sd,dFifob) 4- O(Gk-t) .  [16] 

+ 945(2,. + 3)(19}. + 16) 

where Cv(,:J = 2127976,.- - 1634192026 - 384949642 s + 12294255124 

+ 47406831123 + 591515680,:. 2 + 332123136,;. + 71700480, 

and C5(2 ) = 40526025 + 2366960,i.* 4- 914217323 + 8595967£ 2 + 33341602 + 693760. 

It is apparent now by inspection that the expressions given above bear a striking similarity 
to Hand's equations provided 4ii is identified with F,y. The appearance of higher-order 

tensors (i.e. of order higher than 2) is then due to the fact that the droplet does not remain 
ellipsoidal but instead, assumes a more complex shape. Still, [14], [15] and [16] clearly 
represent a possible extension of Hand's theory to include more general types of micro- 
scopic anisotropies. 

It is important to note also that the physical analysis applied to the theology of a dilute 
emulsion does yield two different sets of equations, as predicted by Hand: one expression 
relating the stress to the rate of strain and to a measure of the local anisotropy, and a set of 
differential equations describing the variation of the anisotropy as a function of time and 
of the rate of strain. Furthermore, all the terms appearing in Hand's phenomenological 
relations arise naturally from the analytical solution to the flow problem as already dis- 
cussed by Frankel & Acrivos (1970). 

Next. the unknown coefficients of [8] and [9] can easily be related to the physical para- 
meters of the suspension. Thus. for the stress equation, the values of the ~r's` to O(Gk-3), are: 

O" 0 = --p, (7" 1 = 0" 2 = 0 ,  

[ 24 288(5912234-4877922+ 749412+ 29628)~Z(At,,A,,.) ] 
a3 = #4P 22"+ 3 245(22 + 3)3(19£ + 16) ' 

24012 - 1):(1212 + 159)32#oa, 0"5 = 0, 
0"'~ = 49(22 + 3) 3 

{ t l} ao = 2#0 1 + ~ 22 + ~  + 4 9 - ~  + ~)S [32(A~.,At.,) " 

360(2 - 1) 2 720(2 - 1)2(79, ;. + 96) 
a7 = 3#@, os = - 32#o~o. 

7(22 + 3) 2 49(2,;. + 313 

288(,:. - 
- ~i~ = ~ 1 1  = O. [17] 

e 
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In addition, since the differential equation for F~i is, in this case, also linear in the rate of 
strain, a comparison between [9] and [15] yields the following expressions, to order (Gk-2), 
for the coefficients 0: 

0 0 = 0 1  = 0 2 = 0 ,  

-40(2  + 1) 

03 (22 + 3)(192 + 16i ]~- 1 

48C.r(2)(A~,.AI,,,) 
49(22 + 3)3(192 + 16)3(102 + 11)(172 + 16) 8' 

2(2 - 1)(2234423 + 5276822 + 455322 + 19356) 
04 = - 49(22 + 3)3(192 + 16) 1~, 05 = 0, 

0 6 
3(22 + 3) 

8-1 _ 2(1117224 + 1833623 + 1744022 + 34992 - 7572) 8(A~.AI.), 

10(42 - 9) 
07 = 7(22 + 3) 2. 0s = 

49(22 + 3)3(192 + 16) 

48(2 - 1)(279323 + 796122 + 84742 + 3522)8, 

49(22 + 3)3(192 + 16) 

288(13723 + 62422 + 7412 + 248) 
0o = 7(22 + 3)2(192 + 16) 2 010 = 011 = 0. [18] 

Similarly, for the case of highly viscous drops, the same procedure as above yields up to 
order (G,;,- 2) that: 

a O  = - - 1 7 ,  0"1 ----" 0"2 ----" 0"5 = 0"9 ----" 0 . 1 0  ~ 0 .11  ~ O,  

12 3630 
0"3 = ~- 2- 2~o~, 0", = ~ 2- 2~o~, 

o, _ , , o  o, - - 

0 o = 0 ~  = 0 2 - - 0 5 - - 0 9 - - 0 1 o = 0 1 x - - 0 ,  

20 
03 = - N (82)- 1 04 = - 62-1 

0~ = -5 _ _52-1 -- 32- 2A~mAI,,,, 0.7 ffi --10 2-1, 
6 4 7 

08 = 182 -1. 

Although conforming to Hand's equations, a dilute emulsion is in fact a "pseudo- 
anisotropic" fluid, since its anisotropy is developed only as a consequence of the motion, 
and hence its constitutive equation should reduce to that of a simple fluid. Specifically, 
for weakly time-dependent flows, i.e. such at 8(~/~t) is 0(8), [15] and [16] can be solved by 
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a method of successive approximations which yields: 

Fi t  .~. 

and 

192 + 16 ( 1-60122 + 8932 + 256 
24(2 + 1) leiJ + 

[-!192 + 16)2(22 + 3) 2 ~2e~ 
+ / 1600(2 + 1) 2 ~ t  2 

+ 

(22 + 3)(192 + 16).~ei~"] Sd(eileu) 
40(2 + 1) ~ t  1 

3(192 + 16)(147623 + 483722 + 46732 + 1264) / ~eu~ 
Sd [ e,, --~-) 

5600(2 + 1)5 

P7(2) )1} 
(22 + 3)(172 + 16)(102 + 11)(2 + 1) '/eu(et"e'" 

+ O(G4f13), 

7512 + 656 
Fu*b = 544320(2 + 1) 2 Sd4(eue°b) + O(G2fl)" 

Then the constitutive equation becomes: 

5 2 + 2  
P u =  - P 6 u  + 2 # o e u  1 +~o + 1) + 

where 

and 

(192 + 16)RT(2)flz I }  
(22 + 3)(172 + 16)(102 + 11)(2 + I) 5 e~''e~'' 

,(192 + 16)( (192 + 16)~e  u 3(2522 + 412 + 4)Sd(eueu) 
+/a°t0/J 20(2 + 1 ) 2 l -  2 ~---T + 7(2 + 1) 

_ fl(192 + 16)(15023 + 217922 + 28972 + 724) I ~eu/ 
Sa l e , , - ~  ] 

280(2 + 1) 2 

+ fl(192 + 16)z(22 + 3)~2eij~ 
80(2 + 1) ~t z J + O(Gaf13)' 

Pr(2) = 3103.9082 ~ + 20684.8626 + 72725.2425 + 123993.982* 

+ 103839.1223 + 41745.3022 + 7148.422 + 428.53, 

R42) = 422.2827 + 3208.526 + 9960.9125 + 11052.9724 + 5115.5723 

+ 2848.0722 + 1711.662 + 100.86. 

[19] 

It is immediately apparent that [19] is identical to [2], the stress relation given by Rivlin & 
Ericksen (1955) in their theory of isotropic fluids. 

By neglecting terms of 0(/32), Frankel & Acrivos (1970) obtained an expression identical 
to [19] and showed that their relation could then be recast i~ terms of Oldroyd's con- 
stitutive equation, as given by Eli. It is interesting to note, however, that, when the O(fl 2) 
terms are taken into account, such a transformation is no longer feasible owing to the 
occurrence of higher-order time derivatives of e u and cross products between eli and its 
derivatives. 
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(b) Elastic spheres 

Goddard & Miller (1967) studied the rheology of a dilute suspension of elastic spheres. 
For a Hookean solid, and for small deformations of the particles, they obtained the 
constitutive equation: 

Pu = - P6u + 2#oeu + 5#ocP {eu - (~Du/~t)  + ~Sd(e~rCu) - ~Sd(C~(~Cu/~t))  + O(Ge2)} , 

E2o] 

and also showed that C u, the finite strain tensor of the particles, satisfies the differential 
equation: 

~ C ~ / ~ t  + (1/~)C o = ~e o + ~Sd(e,tC o) - z~Sd(Ca(~Cj~/~t)) + O(Gc2), [21] 

where ~ = 3#o/2r, with r being the elastic modulus of the particles. Furthermore, since the 
above apply only for small deformations, the magnitude of any element of C u is O(e), 
where e is much smaller than unity and is defined by e = zG << 1. Without loss of generality, 
[21] can be solved by successive approximations to eliminate cross products between C u 
and ~ C u / ~ t ,  and becomes 

~ C u / ~ t  = ~e u - (1/~)C u - ~Sd(eaCu) + (24/7T)Sd(C#Cu) + O(Ge2), [22] 

and hence, the constitutive equation can be recast into: 

Pij = - PtSu + 2#o(1 - ~tp)e u + 5#otP[(1/z)C u + ~Sd(ettCu) - (4/7z)Sd(CiICu) + O(Ge2)]. [23] 

Again, a comparison between Hand's relations [8] and [9] and those just derived for a dilute 
suspension of elastic spheres, shows that the two cases are equivalent if the anisotropy 
tensor A u is identified with the finite strain tensor C u. To be sure, this result is not surprising 
and could have been foreseen. Indeed, it can be shown that when an elastic sphere is 
suspended in a homogeneous shear field, the stress system inside the particle is also homo- 
geneous so that the sphere deforms into an ellipsoicL Such a suspension assumes therefore 
the particular type of anisotropy considered in Hand's theory, and is naturally described 
by [8] and [9]. 

The unknown coefficients appearing in Hand's equations can now be readily determined 
to O(Ge 2) and become 

a o  = - p  (arbitrary pressure term), a~ = 5/Zoq~/r, 

tr7 = ~ /ao¢ ,  a9 = -(20/7~)/Zo~p, 03 = - ( l / r ) ,  0~ = ~, 

a6 = 2#o(1 - ~-~), 

07 = - ~ ,  09 = 24/7z, 

[24] 

all other coefficients being zero. 
Because of its isotropy at rest, a dilute suspension of elastic spheres is another example 

of a pseudo-anisotropic fluid, and thus, its constitutive equation is expected to reduce 
to that of a simple fluid. Again then, for weakly time-dependent flows and provided that 

is small compared with unity, a method of successive approximations will again yield a 
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constitutive equation of the type proposed by Rivlin and Ericksen: 

( 5 ) [ z~eij 2zSd(e~,e,j)+O(G3z2)l. [25] P,j = -p6,j + 2#o 1 + ~p eij+ 25/2ot p -- ] 9"--]- 4- -7  

Although the above can also be recast in the form of Oldroyd's equation, it seems reasonable 
to assume, in view of the results obtained for an emulsion, that this transformation would 
no longer be feasible if the higher-order terms were included in [25]. 

It is worthwhile to note the important similarity existing between suspensions of elastic 
spheres and liquid droplets, which appears to result from the fact that the surface tension 
forces play qualitatively the same role as the elastic forces in resisting any further defor- 
mation of the particles comprising the suspension. 

SUSPENSIONS OF RIGID PARTICLES 

(a) Solid ellipsoids 
Starting from Jeffery's (1922) expressions for the creeping flow field past a solid ellipsoid, 

Hand (1961b) derived a constitutive equation for a dilute suspension of such particles 
in the absence of Brownian motion which was also obtained by Batchelor (1970a} using a 
somewhat more general approach. In Batchelor's formulation, the bulk stress is defined 
as an ensemble average of the local microscopic stresses, over a representatative volume, V, 
enclosing N particles, and is expressed as 

4~/~° 
Pij = -P~ij  + 2#oe~ + V " D~, [26] 

where the summation is taken over all particles in V. Also, D~j- represents the contribution 
to the stress arising from the presence of the particles, and is easily derived from Jeffery's 
results. 

Evidentiy, the theory of anisotropic fluids seems well suited to model such a suspension, 
since the local anisotropy due to the particles can easily be represented by a symmetric 
second-order tensor (e.g. the tensor of the surface of the ellipsoid). In particular, using 
his definition of the bulk properties of the suspension, Hand (1961b) established an exact 
correspondence between Ericksen's equations and those describing the rheology of a dilute 
suspension of spheroids, where, in this case, the preferred direction of the fluid can be chosen 
to coincide, at every instant, with the axis of revolution of the particles. Hand (1961a) 
also showed that his phenomenological equations could model a suspension of arbitrary 
ellipsoids, and gave the corresponding values for the coefficients in [8] and [9] when the 
anisotropy, Aij, is the tensor of a particle. 

Using Batchelor's definition of the bulk properties of a suspension of ellipsoids, in the 
case where V contains one particle, we shall now give the corresponding expression for 
those coefficients in [8] and [9] in a form which clearly brings out their symmetric dependence 
on the semi-diameters a. b, c of the ellipsoids. First. an orthonormal system of three unit 

(at (bl (c) 

vectors hi, n~, n~ directed along the principal axes of one particle is chosen. Next, the tensor 
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A~jis defined as 

1 (")(°) 1 (b)<b) 1 (¢)(¢) 
A i j  = + - -  + ninj, a-- ~ ninj b2 ninj -~ 

in a fixed Cartesian coordinate  system, it being unders tood that  A~j is a function of time, 
since the ellipsoids are rotating. Then,  by compar ing  [26] and [8], after replacing D~j by its 
value given by Batchelor  (1970a), we obtain 

(7 4 = - - - -  
~ [A"aa(b + _ c4) 2 + B"b8(c + _ a~,)2 + C"cS(a a _ b+) 2 + 4A'b+c+(c + _ a+)(a + - b a) 
a o c 1 9  

+ 4B'a+c+(a + _ b4)(b a _ c a) + 4C'a+b+(b + _ c+)(c + - a+)], 

a s = t71o = 4(abc)l~O¢[A,,a6(b2 + c 2 ) ( b  2 - c2)  2 + B"b6(c 2 + a2)(c 2 - a2)  2 
D 

+ C " c 6 ( a  2 + b 2 ) ( a  2 - b2) 2 + 2 A ' b 2 c 2 ( c  2 - a 2 ) ( a  2 - b2)(2b2c 2 + c 2 a  2 + a 2 b  2) 

+ 2 B ' c 2 a 2 ( a  2 _ b2)(b 2 - c2)(2a2c2 + c2b 2 + b2a 2) 

+ 2 C ' a 2 b 2 ( b  2 _ c2)(c 2 - a2)(2a2b 2 + b2c 2 + c2a2)], 

a6 = 2#o + - ~ c  ~ I + (c 2 _ a2)(a2 _ b2 ) + B' 1 + 2ba 1 
(a 2 - b2)(b 2 - c2i 

E 2c+ 1} + C' 1 + (b 2 _ c2)(c2 _ a2 ) , 

a~ = 161z°~ [A'a'*(b+ - ca) + B'ba(ca - aa) + c 'c '* (a '~-  b'*) " (~  - - ' b ~  --- c2~'(c 2 - -  ~ " 

a s = - 1 6 # o ~ ( a b c ) [  A'a2(b2 - c2) --b~B'b2(c2 - a2) c2)-~ -2 - C'c2(a2 - b2)]  

~11 = -4(abc)3/ao~ aD-  l[A"aa(b 2 - c2) 2 + B"b+(c 2 - a2) 2 + C"c+(a 2 - b2) 2 

+ 4A'b2c2(c 2 _ a2)(a 2 - b 2) + 4 B ' c 2 a 2 ( a  2 _ b 2 ) ( b  2 - c 2) 

+ 4C'a2b2(b2 _ c2)(c 2 - a2)], 

where D = ( a  2 - b2)(b 2 - c2)(c 2 - a2)[b2c2(b 2 - c 2) + c2a2(c 2 - a 2) + a2b2(a 2 - b2)]. 

Also, A', B', C' and A", B", C" arc related to the integrals ct~, ]~h, ~ and ate, /~,  ~ ,  in t roduced 
by Jeffery (1922), by means o f A '  = i /2(b 2 + c2)o(o, with similar expressions for B' and C', 
and A " =  g~/(ct~flg + f l ~  + T~g'~), with similar expressions for B' and C". Similarly, 
from a compar ison  between Jcffcry's equat ions of mot ion  of the ellipsoid and [9], it is 
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possible to show that the various coefficients 0 become: 

0 0 = 0 1 = 0 2  = 0 3 = 0 9 = 0 ,  

2[(a2b 2 + b2c 2 + c2a2) 2 + (abc)2(a 2 + b 2 + c2)] 

04 = (a 2 "4- b2)(b  2 4- c2) (c  2 d- a 2) 

2(abc)2(a2b 2 + b2c 2 + c2a  2) 

0s = 010 = (a 2 + b2)(b2 + c2)(c2 + a2 ) 

4 [ ( a  2 4- b 2 d- ¢2)2 _ (a2b 2 q_ b2c 2 q_ ¢2a2)]  

06 = (a 2 + b2)(b 2 + c2)(c 2 + a 2) ' 0 7 ~-- 6 ,  

8(abc)Z(a 2 + b 2 + c 2) . 2(abc) 4 

0 s = _ (a 2 + b2)(b 2 + ¢2)(C3 -~ a2) ' 011 (a 2 4- b2)(b 2 + c2)(c 2 + a 2) 

The algebraic complexity of some of these expressions limits the practical interest of 
this result. However, the numerical values of the a's and 0's were computed for a variety 
of shapes and are given in tables 1 and 2. It was found, interestingly enough, that those 
coefficients always retained the same sign, as shown in table 3, Their asymptotic behavior 
was also investigated for three particular shapes: an almost spherical ellipsoid, a slender 
ellipsoid, and a flat and almost circular ellipsoid. In all three cases, the product abc is set 
equal to unity which, of course, does not restrict the generality of the results, since this 
condition can be satisfied for any ellipsoid after a simple affine transformation. These 
asymptotic expansions should be useful in assessing the magnitude of the coefficients 
in Hand's equations for suspensions of arbitrary slender bodies or of disk-like bodies. 

Table 1. Values of the coefficients in Hand's stress equation for a dilute suspension of solid ellipsoids, as a function 
of the shape of the particles. 

Eccentricity 
(1 - b2/a2) 1/2 (1 - c2/b2)1./z #"  o s or a lo  #~ #7 as  at1 

0.2 0.2 8.147 - 2.543 5.256 1.632 - 1.886 0.842 

0.4 8.167 - 2.541 5.265 1.631 - 1,873 0.838 

0.6 8.294 - 2:534 5.320 1.622 - 1.805 0.819 

0.8 9.121 - 2 . 5 4 5  5.673 1.581 - 1.519 0.741 

0.4 0.2 8.164 - 2.540 5.262 1.631 - 1.873 0.838 

0.4 8.194 - 2.537 5.275 1.628 - 1.853 0.832 

0.6 8.349 - 2.530 5.342 1.617 - 1.773 0.809 

0,8 9.279 - Z546  5.732 1.574 - 1.473 0.727 

0.6 0.2 8.238 - 2.522 5.284 1.621 - 1.807 0.817 

0.4 8.285 - 2 . 5 1 6  5.301 1.616 - 1.775 0.807 

0.6 8.489 - 2 . 5 0 6  5.383 1.602 - 1.676 0.778 

0.8 9.618 -2 .531  5.832 1.552 - 1.358 0.691 

0.8 0.2 8.491 - 2.421 5.306 1.574 - 1.534 0.723 

0.4 8.558 - 2.407 5.319 1.565 - 1.489 0.707 

0.6 8.845 - 2.388 5.410 1.543 - 1.374 0.671 

0.8 10.353 - 2.426 5.925 1.481 - 1.072 0.583 
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Table 2. Values of the coefficients in Hand's anisotropy equation for a dilute suspension of solid ellipsoids, as a 
function of the shape of the particles. 

Eccent r ic i ty  

( I  - ha~a2) l/" (1 - c2/b2) ~/2 0,  0s or  01o 06 0~ 0s 011 

0.2 0.2 2.999 - 0.749 - 3.000 6 - 2.998 0.250 

0.4 2.994 - 0.746 - 3.002 6 - 2.984 0.248 

0.6 2.969 - 0 . 7 2 9  - 3 . 0 0 5  6 - 2 . 9 0 8  0.237 

0.8 2.891 - 0.658 - 2.958 6 - 2.567 0.193 

0.4 0.2 2.993 - 0.746 - 3.004 6 - 2.984 0.248 

0.4 2.985 --0.741 - 3 . 0 0 8  6 --2.962 0.244 

0.6 2.956 - 0.720 - 3.011 6 -- 2.873 0.232 

0.8 2.877 - 0 . 6 4 6  - 2 . 9 5 5  6 - 2 . 5 1 1  0.186 

0.6 0.2 2.960 --0.727 - 3 . 0 3 1  6 - 2 . 9 1 5  0.237 
0.4 2.946 -- 0.718 -- 3.040 6 -- 2.881 0.232 

0.6 2.908 - 0.692 - 3.048 6 - 2.768 0.216 

0.8 2.828 - 0 . 6 1 2  - 2 . 9 8 5  6 --2.378 0.168 

0.8 0.2 2.796 - 0.642 - 3.215 6 - 2.634 0.193 

0.4 2.770 -- 0.628 - 3.243 6 - 2.584 0.186 
0.6 2.717 - 0 . 5 9 4  - 3 . 2 7 7  6 --2.449 0.168 

0.8 2.637 -- 0.513 - 3.221 6 - 2.053 0.124 

Tab le  3. Sign of the coefficients m H a n d ' s  equa t i ons  for a d i lu te  suspens ion  of r ig id  el l ipsoids.  

Pos i t ive  a ,  oe er7 o~ ~ O, 0~ 01 

N e g a t i v e  crs as  a l o  0s 0~ Os Olo 

(i) Almost spherical ellipsoids. Let a 2 = 1 + e, b 2 ffi 1, c 2 = (1 + e)-1, with e << 1. 
Then,  after some lengthy calculations,  the a sympto t i c  forms for the 0-'s are found to be: 

0-, = 8.14311 + O(e2)]#o~O, 

0-4 ffi 2/~o + 5.25511 + O(e2)]~to~O, 

0-s = - 1.88811 + O(e2)]#o~O, 

cr s = Olo = -2 .54311 + O(82)]~to~O, 

o~ ffi 1.63311 + O(e2)]#otp, 

o-11 = 0.84311 + O(e2)]#o~o. 

Interestingly enough, the above result shows that several terms in Hand's equation will 
contribute to Einstein's (1906) formula, namely Po = -PJ~J + 2po(1 + ~o)e~,  when 
goes to zero. As for the coefficients appearing in the differential equation for Aq, these can 
be easily evalua ted  to  yield: 

0 1 1 = 3 + O ( e 2 ) ,  05 - - - - -01o=  - ~ + O ( e 2 ) ,  0zff i3+O(e2) ,  0 S = 3 + O ( e 2 ) ,  0 1 1 = ¼ + O ( e 2 ) .  

Again, the solid body  ro ta t ion  equa t ion  of  a sphere  will be recovered th rough  the contr ibu-  
t ions of  several  t e rms  in (9). 

(ii) Slender ellipsoids. One  semi-diameter ,  a, is assumed to be m u c h  larger than the 
o ther  two, and  thus b/a << 1 and  c/a << 1, co r responding  to a >> 1. The  l imiting fo rm of 
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the coefficients of the stress equation are then 

0.4. ~--" 

aa(b 2 + c2) 2 
4a 3 #°co(1 + ;f)' 

logg- - 5 

(b+c)(b 3 + c  a) , ) 
a 6 = 2 # o  I+cO bc(b 2+c2 ) [1+0(8)]~, 

8/Z°cOC2)'[1 + O(e)], as = aa(b 2 + 

where X is 0(8), and 

0"5 = 0 . 1 0  = 

a(b 2 + c 2) 

4a 3 #°q~(1 + ;(~ 
log b - _ + c  2 

4 
0.7 = -#oco[I + O(e)], 

a 

#oco 
at1= {lOgb4a 

+c 
b 2 _ c 2 b 2 _ c 2 

(I + Z), 

The coefficients for the second of Hand's equations can be similarly evaluated: 

21 !b2 + c2)2 + (be)Z] O, (b 2 + ~-/)- .j [1 + o(e')], 

- 4  [i + O(e')], 
06 = b2 + c------- ~ 

2 
011 = a,,(b2 + c2)[i + O(g)], 

2 
0 s = 0to = - ~ [ 1  + 0(~')], 

-8 
0 s = a2(b 2 + c2 )[I + O(e')], 

1,  b 2 + c2/ .  
where g = max ~ - - - 7 - - ]  

The stress relation for this suspension of slender particles follows readily: 

2-~#°coa3[- ~ L et'nzn'[" (°)(°) .j] [" (°)(~) (s)o) (o(~)(,)-I = - -  ~ n t n  j Pij p6,1 + 2#oei i + In + O(Ge) L~nlnj - -- ½ninj J 

and is identical to that derived by Batchelor (1970b) for the particular case of an extensional 
flow. 

A couple of observations are in order regarding this result. First, the contribution to the 
bulk stress due to the inclusions is essentially felt through the terms Sd(Ao) and Sd(AuAt~). 
Furthermore, the particle stress is multiplied by aa/(2 In 2a 3n - 3), a factor which can 
become quite large, since a was assumed much greater than unity. For the analysis to be 
valid, the volume concentration of particles must therefore be very small:c0 << (2/a 3) In 2a 3/2. 
As was pointed out by Batchelor (1970b), this implies that the theory of dilute suspensions 
does not really apply to a suspension of slender particles, or, conversely, that the addition 
of even a small number of slender particles can exert a profound effect on the bulk stress 
of a fluid. 

(iii) Disk.like ellipsoids. Let a2= 1 + e/e, b : =  1/8(1 + e), c = 8, with ~ << 1 and 
e << 1. In this case, a and b are both large and almost equal. The asymptotic forms of the 
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a's thus become: 

11 72 
a4 - - # o ~ a ~ e -  / {1 + ;~ + 0(~6)}, 

a s - -  alo = -#o~O~'~ ~-312 1 + ) ~ -  1 +X+- i - i - (  1 + Z,) + 0(~ 6) ' 

~ - - 2 # 0  l + ~ o ~ n  ~ 1 - r e  +O(e2)  + O  , 

3n ~1:2 [1 + O(e) + 0 (~-~/2)], 

u8 = - # o q ~ ~ - ~  5/2 1 + O(e) + 0 

a,1 = /aoq~n  1 + Z - 2 e s  1 + Z + ] - ] - ( 1  +Z~) +0(e~)  ' 

6r~e3/2 
where Z --- l l e  2 (A" + B" - 2C")[I + 4~ 3 + O(~6)], 

= ( A "  - B " )  - and ~t - - ~  1. 

Both Z and Z, are O[max(e, e-a/2/e)] at most. 
The asymptotic form of the coefficients 0 can be similarly obtained: 

0, - e -a[ l  + O(B 3) + O(e2)], 0s = 0,o = -~[1  + O(8 3) + O(e2)], 

06 = - & [ 1  + O(e a) + O(e2)], 0a = -8e2[1 + O(e2)], 011 -- ca[1 + O(e a) + O(e2)]. 

The constitutive equation of such a suspension is then: 

2 a.2( ['(*)(*) (b~) (c)(~)'] 

'"'" I}[ Lepton,n,, + O(Ge) 1 + O(e) + 0 • 

From this result, it is seen that the contribution to the stress due to the presence of the 
panicles, is again of order a 3. Furthermore, since the denominator no longer contains a 
logarithmic term, as was the ease with the corresponding expression for slender ellipsoids, 
it would appear that the effect of disk-like ellipsoids would be felt somewhat more strongly 
than that of slender ellipsoids of equal length. Again, the above constitutive equation is 
quite limited in scope, since it applies to extremely dilute suspensions only. However, it 
suggests that the presence of a few disk-like particles can have truly dramatic effects on the 
stress of a fluid, in fact, even more so than in the previous case. 
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(b) Solid spheres: the effect o f  inertia 

The rheology of a dilute suspension of rigid spheres was first studied by Einstein (1906) 
in the absence of inertial effects and hydrodynamic interactions between particles. Later 
analyses showed that the suspension remained Newtonian and that the presence of the 
spheres was felt only through an increase in the shear viscosity. Recently, the influence of 
inertial forces on the steady-state rheology of such a suspension was examined by Lin, 
Peery & Schowalter (1970), who developed a regular perturbation solution to the Navier- 
Stokes equations for flow past a freely suspended sphere, when the Reynolds number R 
of the motion is small compared with unity, and showed that, as expected, the symmetry 
of the flow in the vicinity of a particle is destroyed by the presence of small inertia forces. 
Since this last result suggests the formation of a local anistropy, it is conceivable that a 
theory of anisotropic fluids, for example, a generalization of Hand's equations to include 
higher-order tensors, could describe the rheoiogy of a dilute suspension of solid spheres, 
when R is not zero. Unfortunately. owing to the complexity of the problem, a general study 
of the rheology of such a suspension which includes time-dependent effects is presently 
not available, and hence the validity of the above hypothesis cannot be directly established. 
We shall proceed with this point of view, however, and explore to what extent the results 
obtained previously for dilute suspensions of deformable particles, can be used to generalize 
the rheological equation developed by Linet al. Thus, we shall assume that for a general 
time-dependent linear shear field, the rheological equation for the suspension of solid 
spheres conforms to [8] and [9] with the addition, perhaps, of some higher-order tensors. 
Here the non-Newtonian behavior is obviously caused by the inertia forces, so that the 
time derivatives appearing in the constitutive equation should be multiplied by some 
measure of the inertia effect which, from fluid mechanical considerations, should in all 
likelihood be proportional to an algebraic power of the Reynolds number. Also, since 
R is assumed to be small compared with unity, for weakly time-dependent flows the 
same treatment used in conjunction with suspensions of elastic spheres and liquid droplets 
should be applicable here. The differential equations describing the anisotropy should 
then be amenable to solution by successive approximations, thereby reducing the con- 
stitutive relation of the suspension of solid spheres to the Rivlin-Ericksen equation. 
Evidently, even if this proves to be the case, it will not mean necessarily that a generalized 
theory of anisotropic fluids does describe a suspension of solid spheres in the presence of 
inertia effects, but rather that there is no contradiction between our hypothesis and the 
analytical results presently available. 

We recall now that Lin, Peery & Schowalter (1970) derived their constitutive equation 
for the special case of a steady simple shear flow in the xl direction: u I = Gx 2. They 
obtained for the bulk stress to 0(R3'2): 

P l l  = - P  +IaooGRL - 2  + RI ' z (30B-2  - 5Bo)]. 

P22 = - P  +#o~GRi;3 + RIizl-30B-2 - 5Bo)], P33 = - P  + IO#otpGRa/2Bo, 

P12 = Pzl  = #011 + ~olG + 30uooGR3/2B2, P23 = P32 ----- P31 = P I 3  = 0, [273 

where B_ 2, Bo. B: are numerical constants. The Reynolds number of the motion is based 
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upon the particle radius, a, the magnitude of the shear rate G, the viscosity #o, and the 
density, p, of the suspending fluid, i.e. R = a2Gp/#o . We shall show now how the above 
constitutive relation can be considered as a particular case of the Rivlin-Ericksen equation, 
evaluated for a steady simple shear flow. 

Unfortunately, even under these special flow conditions, [2] contains several unknown 
coefficients, ~,,, which cannot be determined uniquely from the limited information pro- 
vided by [27]. However, since the latter was obtained from a regular perturbation solution, 
developed for small values of R, or equivalently of G, some conclusions can be drawn 
regarding the order of magnitude of the various ~'s. Thus, dividing through [2] by ~oG 
yields 

Pij - P6ij = °~1 eij O~ 2 1 ~e o ~3 1 rt 4 1 [ ~e i j  I 
I~oG #-'o-G+ I~o G - -  + --'G'Sd(e'te'J) + ~o -G Sd l e " - ~ -  l e t  #o 

~5 l ~2e,j [~eu ~eo.I + +  msa +. . . ,  [2s] 
Izo G ~ t  2 #o G ~ ~ t  ~ t  ] 

in which every term is dimensionless. Consequently, since ~eo/~t, Sd(euetj), etc. are 
proportional to G 2 at least, the ~,'s must take the following forms: 

• ~ = ~oA(R), ~', = (~o/G)A(R), ~3 = (~o/G)A(R), ~', = (Uo/G2)A(R~ ~5 = (~o/G')A(R), 

~ = ~o/G3) f6(R), etc., 

where the A(R)'s represent unknown functions of the Reynolds number. Recalling that the 
expression given by Schowalter et al. can be considered as an expansion for small values 
of G, we require that, as R ~ 0, the coefficients of the higher-order terms in G be smaller 
than those of lower-order, i.e. 

fimit [ s" ° rS '  I limit l f~ °r STI 
R--o Xf2----'~r AI -- O, ~-.o XA o r a l  = O, etc. [29] 

By comparing [27] and [28] evaluated for a simple shear flow, it becomes apparent that 
the term -5Boao~oGR 3/2 appearing in both Pl l  and P22, as given by [27] can arise either 
from ~3Sd(eileo) or from a higher-order term, (e.g. o~6Sd(~ed~O(~ez/~O). Consequently, 
there are three possible cases: 

f3(R) = O(R 3/2) and f6(R) = 0(R3/2), 

or f3(R) = O(R ~) and f6(R) = O(RS/2), n > 3/2, 

or f~(R) ffi O(R ~/2) and f~(R) = O(R~), n > 3/2, 

of which only the last combination is compatible with condition [29]. It follows, therefore, 
that, for k > 4, f~(R) = O(R~), n > 3/2. Thus, since [27] contains terms which am at most 
O(R~/2), to this order of approximation, [2] reduces to: 

P~ = -p3~ + eqe 0 + ~2(~eo/~t) + ~Sd(eueu) + O(GR~/2). [30] 

Of course, there are infinitely many ways of choosing the functional dependence of the 
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~'s on the invariants of e u and its time derivatives. By analogy with the results obtained for 
suspensions of deformable particles, however, it seems reasonable to assume that, again 
to this order of approximation, the remaining coefficients depend on the invariants of e u 
only, the invariants of @eu/@t being at least of order R ~. Thus, since e 0 is proportional to R, 
a power of a given invariant of e u will give rise to a. corresponding power of R. For example, 
(e~,,e~,,) 1/2 will be proportional to R, whereas (e~.,,e,.ve~) u~ will be proportional to R uz, 
etc. Thus, by taking into account the fact that the expression derived by Lin e~ al. is valid 
to order (R3/2), we let: 

ea =/%[60 + 6t(2et,.ez=) 1/4 + 62(2el.eiM) 3/'~ + 63(elme,,pepi) 1/6 + 64(ej.e,.ve~)U2], 

~2 =/%IG[65 + 6d2et,,,ez.,,) v'~ + &(el,,,e,.peM)Ue], 

• _a = #o/G[6s + 69(2elmer,n) 1/4 + 61o(2et,nempeM)l/6], 

where the 6's are at most O(1). This particular choice for =~, ~'2, a3 was guided by the form 
of [27] and by the results of the previous section and, although quite arbitrary, appears 
reasonable. 

Equation [30] is now evaluated for the shear flow considered by Lin et aL After noting 
that R is proportional to G, it is then possible to compare the stress components as pre- 
dicted by [27] and [30]. It follows readily that 

6o = 2(I + }~), 6! = 0, 62 = 60~oB2(R/G) 3/2, 65 = ~R,  

66 = 120q~B-=(R3/2/GI/2), 68 = O, 69 = -60~8o(R3/2/G1/2).  

Evidently, the coefficients 64, 67, and 61o Cannot be determined, because, for a simple 
shear, the product e~.,e,,~eM is identically zero. However, since the coefficient, 6a, "of 
eu(2etme~.) 1/'~ was found to be zero, it is reasonable to assume that 63, which multiplies 
eu(ez.,e,.pep~) I/e, will also vanish. 

Therefore, after replacing Be, B2, and B-2 by their values, we finally obtain as a possible 
constitutive equation for a suspension of solid spheres, subjected to small inertial forces, 

Pu = - P 6 u  + 2/~oeu +~/% 2eu + 1"344R3/2 ~ - ~ - - ]  + ~ G 3 ] 

+ -6 I---6T-I 

+ ISd(eaeu)[_O.434R,/2 I ~ ]  + 6'°R3/2 ~ G' ] + 

This above development is of interest because it demonstrates how a plausible general 
form for the constitutive equation of a given fluid can be inferred from a solution that was 
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developed only for very special flow conditions. Of course, as was remarked earlier, the 
fact that the above is a particular case of the Rivlin-Ericksen equation does not imply 
that this suspension of solid spheres is an anisotropic fluid. Rather, the important point 
is that, by taking this somewhat unorthodox approach to the problem, we have been able 
to generalize the results given by Linet al, in a fashion consistent with earlier results 
of suspension theory. 

C O N C L U S I O N  

From this comparison between the continuum and the phcnomenological approaches 
to non-Newtonian fluid mechanics, it is now possible to draw several conclusions. The 
most obvious one perhaps, is that the theory of suspensions allows us to form some judg- 
ment regarding the physical significance and potential usefulness of the various phenomeno- 
logical constitutive relations. In particular, it has been shown here that Oldroyd's equations 
do not really represent the type ofnon-Newtonlan behavior exhibited by a dilute suspension 
of elastic particles. As for the Rivlin-Ericksen equation, it was found to model a dilute 
suspension, but only under the quite restrictive condition of weakly time-dependent or 
steady flows. This theory thus appears to have some physical basis but in a rather limited 
sense. By contrast, it is very clear that Hand's theory of anisotropic fluids, or its generaliza- 
tion to more complex anisotropics, depicts realistically the properties of those non- 
Newtonian fluids which contain some anisotropy on the microscopic scale,, and it is 
worthwhile to note that the exact analytical treatment of suspensions does yield equations 
which arc of the very form predicted by Hand. Furthermore, Hand's relations are not 
restricted to truly anisotropic fluids but are also adea:luate for substances which become 
anisotropic only under motion. 

The experience gained through the study of suspensions of deformable particles has thus 
provided new information regarding the physical significance of the various phenomeno- 
logical equations and of the unknown coefficients they contain. In turn, this new knowledge 
has made possible a plausible extension to a general linear shear flow of the stress expression 
obtained by Linet al. for a dilute suspension of solid spheres, subjected to a simple shearing 
motion, in the presence of small inertia forces. 

Some further remarks should also bc made regarding the choice of the anisotropy tensor, 
Ai#, in Hand's theory, since the value of the various coefficients, ~, in [8] depends on the 
definition of Aij. Thus, if the anisotropy, instead of being described by A~#, is represented 
by a tensor A'~j, such that A~# = yA;j + x6 o, where x and y arc arbitrary scalar quantities, 
then the coefficients tr~ corresponding to [8] with Az# replaced by A;#, are linked to the 
at by means of: 

~5 = [a'5 - -  ( 2 x / y ) ~ l  t]/y 3, 

a ,  = [ ~  - ( 2 x l y ) C s ] / y ,  

~9 = cr~/Y 2, 

a ,  = [o-~ - (2x/y)(~'s + a~o) + (4x2/y2)a~dy-2, 

a 6  = #~ - ( x / y ) o ' 7  + t x ' / y ' ~ c r ~ ,  

¢rs = ¢r'8/y , 

~ 1 o  = (~'~o - ( 2 x / y ) o ' l l ) / Y  3, 

[31] 
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Table 4. Sign of the coeflicients in [8] for suspen- 
sions of droplets and deformable particles, 

~0 @3 @4 @6 a7 

~0 as 

We recall now, that in studying the suspensions of deformable particles, the tensor A u 

was chosen to represent the non-sphericity, i.e. the deviation from isotropy of the particle, 
whereas, in the case of solid ellipsoids, A o stood for the full tensor defining the ellipsoidal 
shape. Therefore, before drawing some global conclusions regarding the phenomenological 
coefficients, a~, and in particular their sign, it is necessary to choose a consistent representa- 
tion for A o. Thus, for the suspensions of droplets and of elastic spheres, the anisotropy 
will be represented, respectively, by A o = 6 u + F u, and by A o = 6 o + C O corresponding 
to x = 1 and y = 1 in [31]. Also the a~ in [17] ahd [24] should now be read as 6 '  The new 
coefficients a can then easily be computed from [8], [17] and [24], but their expression is 
not given here since it is of rather limited interest. However, it is important to note that their 
sign, given in Table 4, will be the same as the sign of the corresponding 6's. 

No conclusion can be drawn for 0"9, as given by [ 17], since its sign depends on the value 
of the viscosity ratio 2. In contrast, from a comparison of tables 3 and 4, it can easily be 
established that a 3, a4, a6, a7 are all positive or zero, whereas as is negative or zero for 
suspensions of rigid or deformable particles alike. This result might be more general and 
has some interesting implications. 

Unfortunately, it is not possible to draw such a conclusion regarding the coefficients 
appearing in Hand's second equation, since, for an emulsion, their sign depends on the 
value of the viscosity ratio. This might be explained by the fact that this equation describes 
essentially the motion of an individual particle, which is known to differ in a fundamental 
way in the three cases considered. Similarly, although this would be of importance to the 
subject of rheology, one cannot draw any conclusions regarding the sign of the ratio 
(P22 - P33)/(Pll - P22) when the bulk velocity is of the form u~ = 6nx2. 
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Sommalre~Les r~sultats th~oriques du domaine de la rh6ologie de suspy.nsions sont ~tudi6s dans 
le context, g~n6ral de mc~canique de continuit~ non-lin.Mire, afin d'extralre des renseignements 
concernant la formulation d'une relation entre Iv modules de contrainte ph~'nom~,nologique et des 
fluides non-Newtoniens. I .~  6quations constitutive, obtenues pour des suspensions d i l u ~  d'cllip- 
soides solides, de spheres 6lastiques et de 8outtclettes liquides sont montr6'es ~tre conformes/t 
un module ph*nom6nologique simple d~j~ propos~ par Hand, et qui apparalt ~tre une ~uation de 
fondement physique consid*rable et d'une utilit~ indispensable. De plus dans les trois cas ¢i-dessns, 
ce*tains des coefficients de l't.~quation de Hand conservent le m~'me signe. Ce r~,sultat est d'applica- 
tion plus g6"n~rale et peut avoir des implications inth'essantes. 

Anszug--Es werden theoretische Ergebnisse auf dem Gebiet de, S ~ s i o n s r h e n l o g i e  im allge- 
meinen Zusammenhang nichflineare, Kontinuummechanik tmtersucht, tun Information in 
Bezug auf Bildung eines ph~tnomenologischen Spannungsverhaltnisses zu gewinnen, um nicht- 
Newton'sche Flfissigkeiten zu bilden. Es wird gezeig, t, dab die grundlegenden Gleichunsen, die 
ffir verd~mnte Snspensionen fester Ellipsoide, elastische* Kugeln und fliissiger Tr6pfchen erhalten 
wurden, mit einem einzigen, yon Hand zue*st vorgeschlagenen, phinomenologischen ModeU 
fibereinstimmen, was sich als eine Gleichung mit bedeutende* physikalische* Grundlalge und 
mOglicher Niitzlichkeit entwickelt. AuBerdem wird gefunden, da~ in allen drei obigen Fallen bes- 
timmte Koeffizienten in Hand's Gieichung de, gleiche Zeichen beibehalten. Dieses Ergebnis 
kbnnte allgemeiner zutreffen und m6gliche*weise interessante Implikationen haben. 
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lNmoMe---Paco4aTpmm~OTCa T e O ~  peaym, TaTl~ s o0nacTx p e o n o r m t  cycnenam~ s 
CM~C~C nenmlel taol t  MCXaaaxa c n n o u m o R  c p e ~ ,  ~TO45M n o n y ~ c r b  aa¢~opMaumo OTHO- 
cEr¢~17~O ~opMyTmpoalUl ~i3eliOMeHOJIOrl~c~gOrO Ha/ipL~gealla no  OT~iOmCdltlo g MO~.~IM 
l t ~ l b i O T O H O ~  TOEyqIIX c p ~ .  YpaBHei l~  n o n y ~ H l i / ~  ~ pa3~a~JIeHllMx cycnes3s l l  
(:~UgOnmktY, 3~COI~UIOB,  ,iLeU[ 3JlaCTKu.g~g]~ c ~ p  H ~ ~ e g  ::K:M~Lg.OCTil OEa.3a.qocb 
COOTBL~CTBylOT O~OR (~HOMCHOJIOI"HqeCXO It lVlOJlCR~[, 12epBoliaqa.qbHO III:)¢RJIOW.~klHO tt 
: ~ I ,  IIOM, gOTOpa.q JtBJI~tCTC~ ypaBHCHHeM C c y K I e C T B C ~  ~M31~IeCKId[M O¢~HOBaHI~M H 
nOTellllHaTlbHOtl nplteMfleMOCrblO. KpoMe TOrO, SO scex  TpeX c71y~IX lIpliBe~leHlib~ Bldllle 
O ~ H H / a l e  lgO3C~lOJ~eHTbl B y p a B H e ~  ~tE[~a OKa3B/ala~TCX coxpal~llOT O ~ l  It TOT Xe 

C]~lBOn. Pe3y.+~bTaT~t MO]rJ[o n p ~ e K I T b  60.rlee 06l.t~pHO a OilH ~ t e W T  i~[Tepec~oo 311aqol~t(:. 


